- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bonfils, X (2)
-
Collins, K A (2)
-
Demory, B-O (2)
-
Fukui, A (2)
-
Gómez_Maqueo_Chew, Y (2)
-
Howell, S B (2)
-
Jenkins, J M (2)
-
Livingston, J H (2)
-
Matson, R A (2)
-
Murgas, F (2)
-
Narita, N (2)
-
Ricker, G R (2)
-
Sabin, L (2)
-
Schanche, N (2)
-
Seager, S (2)
-
Shporer, A (2)
-
Stalport, M (2)
-
Twicken, J D (2)
-
Watanabe, N (2)
-
Winn, J N (2)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cointepas, M; Bouchy, F; Almenara, J M; Bonfils, X; Astudillo-Defru, N; Knierim, H; Stalport, M; Mignon, L; Grieves, N; Bean, J; et al (, Astronomy & Astrophysics)We present the detection of three exoplanets orbiting the early M dwarf TOI-663 (TIC 54962195;V= 13.7 mag,J= 10.4 mag,R★= 0.512 ± 0.015R⊙,M★= 0.514 ± 0.012M⊙,d= 64 pc). TOI-663 b, c, and d, with respective radii of 2.27 ± 0.10R⊕, 2.26 ± 0.10R⊕, and 1.92 ± 0.13R⊕and masses of 4.45 ± 0.65M⊕, 3.65 ± 0.97M⊕, and <5.2M⊕at 99%, are located just above the radius valley that separates rocky and volatile-rich exoplanets. The planet candidates are identified in two TESS sectors and are validated with ground-based photometric follow-up, precise radial-velocity measurements, and high-resolution imaging. We used the software package juliet to jointly model the photometric and radial-velocity datasets, with Gaussian processes applied to correct for systematics. The three planets discovered in the TOI-663 system are low-mass mini-Neptunes with radii significantly larger than those of rocky analogs, implying that volatiles, such as water, must predominate. In addition to this internal structure analysis, we also performed a dynamical analysis that confirmed the stability of the system. The three exoplanets in the TOI-663 system, similarly to other sub-Neptunes orbiting M dwarfs, have been found to have lower densities than planets of similar sizes orbiting stars of different spectral types.more » « less
-
Luque, R; Osborn, H P; Leleu, A; Pallé, E; Bonfanti, A; Barragán, O; Wilson, T G; Broeg, C; Cameron, A Collier; Lendl, M; et al (, Nature)Planets with radii between that of the Earth and Neptune (hereafter referred to as `sub-Neptunes') are found in close-in orbits around more than half of all Sun-like stars1,2. However, their composition, formation and evolution remain poorly understood3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R⊕ to 2.85R⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.more » « less
An official website of the United States government
